ECE Projects
 
 

 

Electronic Projects

       AudioRF Circuits 
     
      Event Detection Circuits 
         
      Math Function Circuits 
         
      Measurement Circuits 
    
      Motor Control Circuits 
         
      Power Supply Circuits 
         
      Sensing Circuits 
         
      Special Function Circuits 
         
      Switching Circuits 
     
      Timing Circuits 
         
      ToneWave Generators 

Butterworth High-Pass Filters

 


Figure 1.  Circuit Diagram for a First-Order Butterworth High-Pass Filter

  The circuit shown in Figure 1 is a first-order Butterworth high-pass filter. A high-pass filter is a circuit that blocks signals with frequencies lower than a cut-off frequency fc.  The circuit in Figure 1 uses an op-amp configured as a non-inverting amplifier, with an RC circuit at the non-inverting input to do the filtering of the low-frequency signals. The cut-off frequency fc of this circuit is determined by R and C, i.e., fc = 1/{2p(RC)}.  

The pass-band gain Gp of this filter is given by: Gp = 1 + (RF/R1).  Thus, if the frequency f of the input signal is higher than fc, Vo ˜ Gp x Vin.  If f = fc,  Vo ˜ 0.707 Gp x Vin.  If f < fc, Vo < Gp x Vin

 

Figure 2.  Circuit Diagram for a Second-Order Butterworth High-Pass Filter

As the frequency of the input signal goes lower than fc, the gain of the first-order Butterworth high-pass filter in Figure 1 decreases at a rate of -20 dB/decade.  If one desires a better high-pass frequency response than this, the second-order Butterworth high-pass filter in Figure 2 can be used.  This circuit exhibits a -40 dB/decade roll-off at f<fc, wherein fc = 1/{2p x sqrt(R2R3C2C3)}. Also, for this circuit, the magnitude of Vo/Vin = (1+RF/R1)/(sqrt(1+(fc/f)4)).